

Deep Learning for Computer Vision

Dr. Konda Reddy Mopuri Mehta Family School of Data Science and Artificial Intelligence IIT Guwahati Aug-Dec 2022

So far in the class..

- Image classification and Linear Classifier
- Perceptron

Dog
Bird
Car
Cat
Deer Truck

Recap: Linear classifier

$$
\mathbf{0} \ \ f(x) = \sigma(\mathbf{w}^T \mathbf{x} + b)
$$

Recap: Linear classifier

- $\mathbf{I}(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b)$
- ² Seen a couple of simple examples: MP neuron and Perceptron

Linear Classifiers: Shortcomings

- Lower capacity: data has to be linearly separable
- Some times no hyper-plane can separate the data (e.g. XOR data)

¹ Sometimes, data specific pre-processing makes the data linearly separable

- ¹ Sometimes, data specific pre-processing makes the data linearly separable
- ² Consider the xor case $\phi(\mathbf{x}) = \phi(x_u, x_v) = (x_u, x_v, x_u, x_v)$

- ¹ Sometimes, data specific pre-processing makes the data linearly separable
- ² Consider the xor case $\phi(\mathbf{x}) = \phi(x_u, x_v) = (x_u, x_v, x_u, x_v)$
- 3 Consider the perceptron in the new space $f(\mathbf{x}) = \sigma(\mathbf{w}^T\phi(\mathbf{x}) + b)$

¹ Feature design (or pre-processing) may also be another way to reduce the capacity without affecting (or improving) the bias

Extending Linear Classifier

1 Single class: $f(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b)$ from $\mathcal{R}^D \to \mathcal{R}$ where **w** and $\mathbf{x} \in \mathcal{R}^D$

Extending Linear Classifier

- **1** Single class: $f(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b)$ from $\mathcal{R}^D \to \mathcal{R}$ where **w** and $\mathbf{x} \in \mathcal{R}^D$
- 2 Multi-class: $f(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ from $\mathcal{R}^D \to \mathcal{R}^C$ where $W \in \mathcal{R}^{C \times D}$ and $h \in \mathcal{R}^{C}$

Single unit to a layer of Perceptrons

Single unit to a layer of Perceptrons

Single unit to a layer of Perceptrons

Formal Representation

¹ Latter is known as an MLP: Multi-Layered Perceptron (i.e, Multi-Layered network of Perceptrons)

Formal Representation

- ¹ Latter is known as an MLP: Multi-Layered Perceptron (i.e, Multi-Layered network of Perceptrons)
- ² can be represented as: $\mathbf{x}^{(0)} = \mathbf{x},$ $\forall l=1,\ldots,L, \hspace{0.1in}\textbf{x}^{(l)} = \sigma(\textbf{W}^{(l)^T}\textbf{x}^{(l-1)} + \textbf{b}^{(l)}),$ and

MLP

Nonlinear Activation

 \bullet Note that σ is nonlinear

Nonlinear Activation

- ¹ Note that *σ* is nonlinear
- ² If it is an affine function, the full MLP becomes a complex affine transformation (composition of a series of affine mappings)

Nonlinear Activation

Familiar activation functions

Hyperbolic Tangent (Tanh) $x \to \frac{2}{1+e^{-2x}}-1$ and Rectified Linear Unit (ReLU) $x \to \max(0, x)$ respectively

Universal Approximation using ReLU functions

1 We can approximate any function f from $[a, b]$ to R with a linear combination of ReLU functions

Example credits: Brendan Fortuner, and https://towardsdatascience.com/

Universal Approximation using ReLU functions

- **1** We can approximate any function f from $[a, b]$ to R with a linear combination of ReLU functions
- 2 Let's approximate the following function using a bunch of ReLUs:

Example credits: Brendan Fortuner, and https://towardsdatascience.com/

Universal Approximation using ReLU functions

$$
n_1 = ReLU(-5x - 7.7), n_2 = ReLU(-1.2x - 1.3), n_3 = ReLU(1.2x + 1), n_4 = ReLU(1.2x - 0.2), n_5 = ReLU(2x - 1.1), n_6 = ReLU(5x - 5)
$$

Example credits: Brendan Fortuner, and https://towardsdatascience.com/

Dr. Konda Reddy Mopuri **17** and Backpropagation **17** and Backpropagation **17**

Universal Approximation using ReLU function

1 Appropriate combination of these ReLUs:

 $-n_1 - n_2 - n_3 + n_4 + n_5 + n_6$

Universal Approximation using ReLU function

- **1** Appropriate combination of these ReLUs: $-n_1 - n_2 - n_3 + n_4 + n_5 + n_6$
- ² Note that this also holds in case of other activation functions with mild assumptions.

Universal Approximation Theorem

1 We can approximate any continuous function $\psi : \mathcal{R}^D \to \mathbb{R}$ with one hidden layer of perceptrons

Universal Approximation Theorem

- **1** We can approximate any continuous function $\psi : \mathcal{R}^D \to R$ with one hidden layer of perceptrons
- 2 $\mathbf{x} \to \mathbf{w}^T \sigma(W\mathbf{x} + \mathbf{b})$ $\mathbf{b} \in \mathcal{R}^C, W \in \mathcal{R}^{C \times D}, \mathbf{w} \in \mathcal{R}^C, \text{ and } \mathbf{x} \in \mathcal{R}^D$

Universal Approximation Theorem

- **1** We can approximate any continuous function $\psi : \mathcal{R}^D \to R$ with one hidden layer of perceptrons
- 2 $\mathbf{x} \to \mathbf{w}^T \sigma(W\mathbf{x} + \mathbf{b})$ $\mathbf{b} \in \mathcal{R}^C, W \in \mathcal{R}^{C \times D}, \mathbf{w} \in \mathcal{R}^C, \text{ and } \mathbf{x} \in \mathcal{R}^D$
- ³ However, the resulting NN
	- May require infeasible size for the hidden layer
	- May not generalize well

MLP for regression

- ¹ Output is a continuous variable in R*^D*
	- \bullet Output layer has that many perceptrons (When $D=1$, regresses a scalar value)
	- May employ a squared error loss

MLP for regression

- **1** Output is a continuous variable in \mathcal{R}^D
	- \bullet Output layer has that many perceptrons (When $D=1$, regresses a scalar value)
	- May employ a squared error loss
- ² Can have an arbitrary depth (number of layers)

MLP for classification

1 Categorical output in \mathcal{R}^C where C is the number of categories

MLP for classification

- **1** Categorical output in \mathcal{R}^C where C is the number of categories
- ² Predicts the scores/confidences/probabilities towards each category
	- Then converts into a pmf
	- Employs loss that compares the probability distributions (e.g. cross-entropy)

MLP for classification

- **1** Categorical output in \mathcal{R}^C where C is the number of categories
- ² Predicts the scores/confidences/probabilities towards each category
	- Then converts into a pmf
	- Employs loss that compares the probability distributions (e.g. cross-entropy)
- ³ Can have an arbitrary depth

Gradient descent on the loss function?

Gradient descent on the loss function? Have to compute *∂L ∂W*(*l*) *ij* and $\frac{\partial L}{\partial b_i^{(l)}}$ $, \forall W^{(l)}_{ij}, b^{(l)}_i$

- Gradient descent on the loss function? \bullet
- Have to compute *∂L ∂W*(*l*) *ij* and $\frac{\partial L}{\partial b_i^{(l)}}$ $, \forall W^{(l)}_{ij}, b^{(l)}_i$
- Almost impossible to derive these expressions analytically! \bullet

- Gradient descent on the loss function?
- Have to compute *∂L ∂W*(*l*) *ij* and $\frac{\partial L}{\partial b_i^{(l)}}$ $, \forall W^{(l)}_{ij}, b^{(l)}_i$
- Almost impossible to derive these expressions analytically! \bullet
- specific to each loss function :-(

Solution: Computational graphs

E.g. Computational graph

 $f(x, y, z) = xy + z$

Gradient flow

 \bullet down steam gradient = local gradient \times upstream gradient

¹ Cybenko G. 1989, [Approximation by superpositions of a sigmoidal](https://link.springer.com/article/10.1007/BF02551274) [function](https://link.springer.com/article/10.1007/BF02551274)